AMERICAN WATER RESOURCES ASSOCIATION

February 2007

ERRATUM ADDRESSING TOTAL PHOSPHORUS IMPAIRMENTS WITH WATER QUALITY TRADING¹

Christopher C. Obropta and Gregory M. Rusciano²

Original article: Obropta, Christopher C. and Gregory M. Rusciano, 2006. Addressing Total Phosphorus Impairments with Water Quality Trading. *Journal of the American Water Resources Association* (JAWRA) 42(5):1297–1306.

This article was originally prepared using lb/yr. The authors correctly converted Table 2 to kg/yr but incorrectly converted Table 3. The corrected version of Table 3 is below. The mistake does not change the results or conclusions.

TABLE 3. Point Source Load Reductions Required to Achieve 0.1 mg/l Effluent Total Phosphorus Concentration from Existing Conditions and Future Discharge Conditions

Study Area	Scenario 1* (kg/yr)	Scenario 2** (kg/yr)
1. Beden Brook	2,358.2	1,132.2
2. Branchburg-Readington	154.2	154.2
3. Branchburg Township	68.5	68.5
4. Chester-Roxbury	2,497.9	2,497.9
5. Millstone River	10,380.9	8,213.7
6. Pike Run	613.3	473.6
7. Princeton-East Windsor	6,579.4	6,579.4
8. Princeton-Stony Brook	2,077.9	380.6
9. Raritan Township	9,234.7	4,722.4
10. Readington-Clinton	5,086.6	1,135.8
11. Somerset-Raritan	56,335.8	26,631.3
12. Washington Township	1,195.7	1,195.7

^{*}Point source load reduction required to achieve effluent concentrations of 0.1 mg/l from existing discharge conditions, where typical effluent concentrations may be greater than 1.0 mg/l.

^{**}Point source load reduction required to achieve effluent concentrations of 0.1 mg/l from a 1.0 mg/l discharge condition. If the existing discharge condition is between 0 mg/l and 0.5 mg/l, Scenario 2 represents a load reduction from 0.5 mg/l to 0.1 mg/l.

¹Paper No. J04145E of the *Journal of the American Water Resources Association* (JAWRA). © 2007 American Water Resource Association. DOI: 10.1111/j.1752-1688.2007.00046.x

²Respectively, Assistant Professor, Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901. (E-Mail/Obropta: obropta@envsci.rutgers.edu); Graduate Assistant, Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901. E-Mail/Rusciano: greg.rusciano@rutgers.edu).